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ABSTRACT 

In this paper, we discuss some of the lessons that we have learned 
working with the Hadoop and Sector/Sphere systems.  Both of 
these systems are cloud-based systems designed to support data 
intensive computing.   Both include distributed file systems and 
closely coupled systems for processing data in parallel.  Hadoop 
uses MapReduce, while Sphere supports the ability to execute an 
arbitrary user defined function over the data managed by Sector. 
We compare and contrast these systems and discuss some of the 
design trade-offs necessary in data intensive computing.  In our 
experimental studies over the past year, Sector/Sphere has 
consistently performed about 2 – 4 times faster than Hadoop.  We 
discuss some of the reasons that might be responsible for this 
difference in performance. 

Categories and Subject Descriptors 
C.4 [Computer System Organization]: Performance of System 

General Terms 
Performance, Experimentation  

Keywords 
Cloud Computing, Data Intensive Computing, High Performance 
Computing, Grid Computing, MapReduce, Multi-Task Computing 

1. INTRODUCTION 
Instruments that generate data have increased their capability 
following Moore’s Law just as computers have.  The result of this 
is a gap between the amount of data that is being produced and the 
capacity of current systems to store and analyze this data. 

As an example, the current generation of high throughput genomic 
sequencers now produce 1 TB of data per run, and the new 
generation of sequencers will produce datasets that are 10 TB or 
larger per run.  A sequence center might have several such 
systems, with each producing a run or more per week. 

The result is that analyzing a large scientific dataset might require 
analyzing hundreds of TB or more of data.  A current rack of 
commodity computers might have four 1 TB disks per computer 
and 32 computers per rack.   The challenge is to develop a 
framework to support data intensive computing that provides 
persistent storage for large datasets (that require multiple racks to 

store) as well as balanced computing so that this persistent data 
can be analyzed.    

To say it another way, platforms for data intensive computing 
must provide persistent storage that spans hundreds to thousands 
of disks and provide balanced computing so that this persistent 
data can be analyzed. While there are scalable file systems (e.g., 
Lustre, GPFS, PVFS, etc.), data processing schedulers (Condor, 
LSF, etc.) and frameworks (MPI, etc.), few integrate storage and 
processing together as is required for data intensive computing. 

The reason that it is so important to integrate the storage system 
and the processing system tightly is because data locality is the 
fundamental principle underlying the efficient processing of very 
large datasets. The requirement that all the data in a computation 
pass through a single central location (or several such locations) 
can be so costly that it can reduce performance by several orders 
of magnitude. For example, a 1000-node system would require 
aggregate data IO speed at TB/s in order to achieve a performance 
comparable to a single node with internal disks. 

Supercomputer systems as generally deployed store data in 
external storage (RAID, SAN, NAS, etc.) and load data into a 
processing system consisting of a very large number of 
processors. The data transfer channel between the external storage 
system and the computing system can be a very serious 
bottleneck. 

Google has developed an internal proprietary storage system 
called the Google File System (GFS) [6] and an associated 
processing system called MapReduce [5] that has very 
successfully integrated large scale storage and data processing.   
Hadoop [15] is an open source implementation of the 
GFS/MapReduce design. Other earlier attempts to integrate data 
storage and data processing for large data sets include DataCutter 
[2, 12], BAD [3] and Stork [11].  Other systems that support 
scheduling for multi-task applications are Condor [14] and Falcon 
[13].  

Hadoop is now the dominant open source platform for distributed 
data storage and parallel data processing over commodity servers.  
While Hadoop’s performance is very impressive, there are still 
many technical challenges that need to be addressed in order to 
improve its performance and usability. Hadoop was designed for 
processing web data and it is not surprising that its performance is 
less impressive for certain types of scientific applications. 

During the last three years, we have designed and implemented a 
scalable storage system called Sector and an associated data 
processing system called Sphere.  Initially, we were not aware of 
the GFS/MapReduce system and although there are some 
similarities between GFS/MapReduce and Sector/Sphere, there 
are also some important differences. In this paper, we identify 
these differences and investigate the impact of these design 
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choices on performance and usability.  The paper also includes 
some experimental studies that we have performed during the past 
year and some lessons learned. 

We start with a brief description of the Sector/Sphere system in 
Sector 2. The Hadoop system follows the design of GFS [6] and 
MapReduce [5]. We compare the file system design between 
Sector and Hadoop in Section 3 and the data processing design of 
Hadoops’s MapReduce and Sphere in Section 4. In Section 5 we 
discuss how Hadoop and Sector/Sphere can interoperate. We 
describe the results from our most recent experimental studies in 
Section 6 and summarizes the lessons learned in Section 7. The 
paper is concluded in Section 8 with a brief look at future work. 

2. SECTOR/SPHERE 
Sector is a distributed file system (DFS) and Sphere is a parallel 
data processing engine designed to work with data managed by 
Sector. In contrast to most traditional distributed file systems that 
require hardware to provide fault tolerance, Sector implements 
fault tolerance by replicating data in the file system and managing 
the replicas.  With this approach, Sector can be installed on less 
expensive commodity hardware. Sector does not implement a 
native file system itself, but instead relies on the local file systems 
that are on each of the nodes. 

Sector automatically replicates files to different nodes to provide 
high reliability and availability. In addition, this strategy favors 
read-intensive scenarios since clients can read from different 
replicas.  Of course, write operations are slower since they require 
synchronization between all the replicas. 

Sector can also be deployed over wide area networks. Sector is 
aware of the network topology when it places replicas.  This 
means that a Sector client can choose the nearest replica to 
improve performance. In this sense, Sector can be viewed as a 
content delivery system [10]. 

Sphere, on the other hand, is a data processing system that is 
tightly coupled with Sector.  Because of this coupling, Sector and 
Sphere can make intelligent decisions about job scheduling and 
data location.  This is quite different than most distributed file 
systems that are not coupled to distributed data processing 
systems. 

Sphere provides a programming framework that developers can 
use to process data stored in Sector. Sphere allows a user defined 
function (UDF) to run on each data unit (a record, block, file, or 
directory).  Note that this model is different than the model used 
by grid job schedulers (such as Condor and LSF) and distributed 
programming primitives (such as MPI and PVM), both of which 
are independent of the underlying file system. 

Figure 1 illustrates the architecture of Sector.  For readability, in 
the rest of this paper, we usually use the term Sector to refer to 
Sector/Sphere.  Sector contains one security server that is 
responsible for authenticating master servers, slave nodes, and 
users. One or more master servers can be started. The master 
servers are responsible for maintaining the metadata of the storage 
system and for scheduling requests from users. The slave nodes 
are the computers that actually store and process the data. The 
slaves are racks of commodity computers with internal disks. A 
client is the user's computer that issues requests to the Sector 
system and accepts responses. 
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Figure 1: Sector/Sphere System Architecture. 

 

Sector/Sphere is open source software developed in C++. It is 
available from sector.sf.net. 

3. FILE MANAGEMENT STRATEGY 
3.1 Block vs. File 
Like the Hadoop Distributed File System (HDFS), the Sector 
Distributed File System (SDFS) stores files on the local file 
system on all participating nodes. The HDFS splits files into fixed 
sized blocks and scatters the blocks over multiple servers. In 
contrast, the SDFS does not split files into blocks.  A dataset in 
the SDFS can consist of multiple files. 

To summarize: a dataset in the SDFS consists of multiple files 
that are not split into blocks.   A dataset in HDFS consists of a 
single file that is split into multiple blocks. 

The SDFS does not split a dataset into multiple files 
automatically.  Instead, the user must do this.  For some 
applications, this can create a small amount of additional work.  In 
practice though, either a large dataset is already split into multiple 
files or this can be done with little effort. 

We noticed in several of our experimental studies that in order to 
achieve optimal performance with Hadoop we needed to increase 
the block size so that an entire Hadoop file could fit into a single 
block and was therefore not split. Notice that this effectively 
reduces to the same strategy that Sector employs. 

In general, the SDFS scatters the files of a Sector dataset over all 
the nodes in a cluster.  Some applications though require that a 
certain collection of files be co-located in a single directory.  To 
support this, Sector will keep all the files in directory together if a 
special file is put into the directory.   

3.2 Replication 
Both Sector and Hadoop use replication to provide data reliability 
and availability, and in certain cases, improve performance. 
Hadoop is designed to work within a data center, while Sector is 
designed to work over multiple data centers over wide area 
networks.  This does not prevent Sector from being used within a 
single data center. 

Sector chooses slave nodes so that replications of the same file are 
as far from each other as possible. This increases data reliability 
because even if a complete data center goes offline, the data can 
still be retrieved from other data centers. Moreover, this strategy 
allows a client to choose a nearby replication in a wide area 
system, which generally results in better data transfer throughput. 



3.3 Data Transfer 
To support wide area clouds, Sector not only uses a different 
replication strategy, but also uses a high speed transport protocol 
called UDT [9].  We choose to use UDT instead of TCP since 
UDT has proven to be better than TCP when moving large 
datasets over wide area high performance networks [9]. 

Sector supports the option of encrypting data when transporting it.   
Hadoop does not currently support encryption. 

 

4. UDF vs. MapReduce 
4.1 The UDF Model 
We use the term data segment to refer to a portion of a Sector 
dataset.  A data segment can be a single record, a contiguous 
sequence of records, a file or a directory of files. Sphere processes 
data by applying the same user defined function (UDF) 
independently to data segments, which are usually scattered over 
multiple Sector slave nodes.  The input to a Sphere UDF is a 
Sector dataset, as is the output.  Recall that a Sector dataset 
consists of multiple files. 

Consider the following serial program for processing data:   

 

for (int i = 0; i < total_segment_num; ++ i) 

 UDF(segment[i]); 

 

In Sphere, the UDF is uploaded to slave nodes and each slave 
node calls this UDF to process all its local data segments. 

Sphere allows a UDF to specify an ID for each output record.  
This is usually called a bucket ID and is a standard technique 
when processing data in parallel.  All records with the same 
bucket ID are placed by Sector into the same bucket, which in 
Sector is a file. The resulting bucket file may or may not be on the 
same node where the data is processed, since different slaves may 
generate data with the same bucket IDs. 

Sphere's computing paradigm can be thought of as a 
generalization of MapReduce. When a Sphere UDF generates 
local data only, it can be thought of as a Map process. When a 
Sphere UDF generates bucket files, it can be thought of as a 
Reduce process.  

It is important to note that MapReduce can only processes data 
records, while Sphere's UDFs can process Sector data segments, 
which can be records, contiguous collections of records, files, or 
directories of files.  When the data segments are directories, it 
enables Sphere to process multiple input streams, since each 
directory can contain multiple files from different datasets. 

Here is an example.  Sphere can process the following serial 
program in parallel over multiple slave nodes: 

 

for (int i = 0; i < total_segment_num; ++ i) 

 UDF(segment_A[i], segment_B[i]); 

 

Hadoop’s MapReduce always performs a sort operation before it 
merges records with the same key.  In contrast, Sphere can run 
any UDF on the bucket files and perform a sort only when 

necessary.  For applications that do not require a sort, this 
flexibility can be quite useful. 

Another difference between Hadoop and Sector is how datasets 
are divided into records. Sphere uses a record offset index for 
each data file in order to parse the file into data records. The index 
contains the offset and size of each record in the file. When an 
index is not present, the minimum processing unit is a file or a 
directory. In contrast, MapReduce uses a user defined parser that 
is invoked at run time to parse the data file into data records.    

Table 1 compares the steps when processing data using Hadoop’s 
MapReduce and Sphere’s UDFs.  

 

Table 1. Comparing the steps in MapReduce and Sphere 

Sphere MapReduce 

Record Offset Index Parser / Input Reader 

UDF Map 

Bucket Partition 

- Compare 

UDF Reduce 

- Output Writer 

 

4.2 Load Balancing 
In addition to data locality, another important factor in 
performance is load balancing. One of the problems for 
distributed data parallel applications is that during certain stages 
of the processing data, the data may be distributed over the slave 
nodes non-uniformly.  

Both Sphere and Hadoop split jobs into relatively small data 
segments so that a faster node (either because the hardware is 
better or because the data on the node requires less time to 
process) can process more data segments. This simple strategy 
works well even if the slave nodes are heterogeneous and have 
different processing power.  

However, Sphere and Hadoop may need to move some data 
segments to a node that would otherwise be idle. Both systems try 
to move data to the nearest available node in order to minimize 
data traffic.  

When processing results need to be sent to bucket files (e.g., in a 
Reduce style processing), the available network bandwidth may 
become the bottleneck.  As a simple example, when data is sent 
from multiple sources to the same destination node, congestion 
may occur on that node and cause a hot spot. Figure 2 illustrates 
the problem. In the top illustration, the data transfers are such that 
there are several hot spots (in red). In the bottom illustration, the 
data transfer is such that there are no hot spots. 

Of course, the bottom diagram in Figure 2 is idealized. In practice, 
it is very difficult for a centralized scheduler to schedule the 
computation so that there are no hot spots. An alternative is to use 
a decentralized scheme to identify and remove hot spots caused by 
congestion. 

In Sphere, the following decentralized approach is used to 
eliminate the hot spots. Before a node tries to send results to a 
bucket file, it queries the destination node and retrieves recent 
data transfer requests. If the aggregate size of the data transfer 



requests is greater than a threshold, the source node will attempt 
to process other buckets first.   

There are some research projects designed to removing network 
bottlenecks in data centers [7].  Note that this is different than 
removing bottlenecks that occur at hosts. 

 

 
 

 
 

Figure 2. Data movement in reduce style processing.  

There are hot spots in the top figure, but not in the bottom 
figure. 

 

4.3 Fault Tolerance 
Finally, as the number of slave nodes increases, so does the 
importance of fault tolerance.   In a Map style processing, fault 
tolerance is fairly easy. A failed data segment will be re-processed 
on another node, if the failure is caused by the failure of the slave 
node hardware, rather than by problems with the data or the UDF. 
This feature relies on data replication provided by Sector. 

In a Reduce style processing, when a UDF sends data to multiple 
bucket files on other nodes, fault tolerance is more complicated 
and can result in significant overhead. Because data is exchanged 
between source and destination nodes, a source node failure will 
cause all related destination nodes to contain incomplete data, 
while a destination node failure will lose data contributed by all 
related source nodes. 

To provide fault tolerance in this situation, the intermediate data 
needs to be replicated. Ironically, due to the overhead introduced 
by fault tolerance, the total processing time will increase, which 
can mean a higher chance of failure. 

For this reason, Sphere does not currently provide fault tolerance 
for Reduce style processing. One option under investigation is to 
find a method that minimizes the cost of re-processing a reduce 
when a failure occurs. One possible solution is to split the input 
into smaller sub-streams and process them independently. If one 
fails, results from other sub-tasks will still be valid and only the 
failed sub-tasks will need to be re-executed. Eventually, the 
bucket files of all sub-tasks can be merged. 

Another issue related to fault tolerance is how to detect poorly 
performing nodes. A poorly performing node can seriously delay 
the whole computation if Reduce or bucket style data processing 
is involved, since in this case all other nodes may need to wait for 

data from or to that node. Most fault tolerant systems can detect 
dead nodes, but detecting poorly performing nodes remains a 
challenge. Hardware issues such as overheating, hard disk error, 
problems with the NIC, etc. may cause poor performance. 
Problems with the network are other common reasons that nodes 
perform poorly. 

Sector uses a voting system to eliminate bad nodes. Each slave 
node periodically sends performance statistics to the master node. 
In particular, each node sends the data transfer rate (ignoring idle 
time) to all the other nodes.  Voting is used to identify poorly 
performing nodes (a node is considered poorly performing if it is 
in the lowest 10%).  If one node gets more than 50% of the votes, 
it is eliminated from the system. 

4.4 Streaming 
The name "Streaming" is used by Hadoop for a utility that is able 
to run applications or system commands directly using a 
MapReduce style of processing.   This greatly increases the 
usability of Hadoop because in many cases users no longer need 
to write Java code but instead can simply pass binaries of existing 
applications to Hadoop. 

Sphere provides a similar utility. Sphere streaming accepts a 
system command or application executable and runs it as a UDF. 
The streaming utility automatically generates a C++ wrapper that 
calls the system command or application executable and processes 
the specified data stored in Sector. 

For bucket-based processing (e.g., Reduce operation), Sphere 
requires the command or application to put the bucket ID as the 
first value of each output record.  Future versions of Sector will 
provide additional mechanisms for specifying the bucket ID. 

 

5. INTEROPERABILITY 
While there are many differences in design and implementation of 
Sector and Hadoop, it is possible to interoperate the two systems. 
For example, Hadoop’s MapReduce can run on top of the SDFS, 
with a Sector interface for Hadoop.  As another example, running 
Sphere on top of HDFS is also possible. In this case, blocks may 
need to be moved during a Sphere process. 

It is also possible to write applications that can run on both Sector 
and Hadoop. Currently this is limited to applications that can be 
supported by Hadoop streaming and Sphere streaming, both of 
which can accept application binaries (including system 
commands) directly and run them in a predefined framework. 

More discussions and related work can be found at 
http://code.google.com/p/cloud-interop/. 

6. EXPERIMENTAL RESULTS 
Previously we have conducted experimental studies on the wide 
area Open Cloud Testbed [16]. We present here two experiments 
conducted on racks within the same data center. This basically 
removes the performance gains that UDT provides over a wide 
area high performance networks. 

MalStone is a benchmark that is a stylized analytic that runs on 
synthetic data generated by a utility called MalGen [1].  MalStone 
records contain the following fields: 

Event ID | Timestamp | Site ID | Entity ID | Flag  

A record indicates that an entity visited a site at a certain time.  As 
a result of the visit, the entity may become marked, which is 



indicated by setting the flag to 1 (otherwise it is 0).  The MalStone 
A-10 and B-10 benchmarks each consist of 10 billion records and 
the timestamps are all within a one year period. The MalStone A 
benchmark computes a ratio for each site w as follows: for each 
site w, aggregate all entities that visited the site at any time, and 
compute the percent of visits for which the entity becomes marked 
at any future time subsequent to the visit. MalStone B is similar 
except that the ratio is computed each week d, and computes: for 
each site w, and for all entities that visited the site at week d or 
earlier, the percent of visits for which the entity became marked.   
MalStone A-100, A-1000, etc. and MalStone B-100, B-1000, etc. 
are similar except the dataset consists of 100 Billion, 1 Trillion, 
etc. records.   

Table 2 lists the results of three different implementations: 1) 
Hadoop; 2) Hadoop streaming with Python code implementing 
MalStone; 3) Sector/Sphere. The results are obtained from a 
single cluster of 20 nodes. The nodes contain an Intel Xeon 5160 
3.0 GHz Quad Core CPU, 12GB memory, a single 1TB SATA 
disk, and a single 1GE NIC. Version 1.21 of Sector and Version 
0.18 of Hadoop were used. 

 

Table 2. MalStone Benchmark for Sphere and Hadoop 

 MalStone A MalStone B
Hadoop 454m 13s 840m 50s 
Hadoop 
Streaming/Python 

87m 29s 142m 32s 

Sector/Sphere 33m 40s 43m 44s 
 

We also compared Hadoop and Sector using Terasort running on 
4 racks within the same data center. We used 30 nodes of each 
rack for the test.   The nodes contain a single Intel Xeon 5410 
Quad Core CPU, 16GB memory, a 1 TB SATA  disk in a RAID-0 
configuration, and a 1 GE NIC.  GNU/Debian Linux 5.0 was 
installed on each node. Version 1.24a of Sector and Version 
0.20.1 of Hadoop were used.    

Table 3 lists the performance of sorting 1 TB of data, consisting 
of 100-byte records with a 10-byte key, on 1, 2, 3, and racks (i.e., 
30, 60, 90, and 120 nodes). 

Table 3. MalStone Benchmark for Sphere and Hadoop 

Number of 
Racks 

Sphere Hadoop 

1 28m 49s 85m 49s 
2 15m 20s 37m 
3 10m 19s 25m 14s 
4 7m 56s 17m 45s 

 

The performance is consistent with the results of our previous 
experiments using Sector Version 0.21 and Hadoop Version 0.18 
[8], although both systems have been improved significantly since 
then. 

Furthermore, in this experiment, we also examined the resource 
usage of both systems. We noticed that network IO plays an 
important role in Terasort. When Sector is running on 120 nodes, 
the aggregate network IO is greater than 60 Gb/s, while for 
Hadoop the number is only 15 Gb/s. 

Because sorting the 1 TB requires exchanging almost the 
complete dataset among all the participating nodes, the higher 
network IO is an indication that resources are being utilized 
effectively. This  may explain why Sector is over twice as fast as  
Hadoop. 

Neither Sector nor Hadoop fully utilized the CPU and memory 
resources in this application because the application is still IO 
bound.  However, Hadoop used much more CPU (200% vs. 
120%) and memory (8GB vs. 2GB).  This  is probably caused by 
the Java VM. 

Tuning Hadoop to achieve optimal performance can take some 
time and effort.  In contrast, Sector does not require any 
performance tuning. 

 

7. LESSONS LEARNED 
In this section, we summarize some of the lessons we have 
learned from our experimental studies over the past year.  

The importance of data locality.  It is well known that locality is 
the key factor to support data intensive applications, but this is 
especially important for systems such as Sector and Hadoop that 
rely on inexpensive commodity hardware.  More expensive 
specialized hardware can provide higher bandwidth and lower 
latency access to disk. 

Generalizations of MapReduce.  MapReduce has quickly 
emerged as one of the most popular frameworks for data intensive 
computing.  Both the Map operation and the Reduce operation 
have been used previously in parallel computing; the reason for 
their current popularity is the combination of being easy to use 
and their proven ability to be useful for an unexpectedly large 
number of applications.   From our experience to date, Sector’s 
ability to apply a UDF to the data managed by a distributed file 
system is also very easy to use and also very broadly applicable.  
A MapReduce can be realized as an easy special case. 

Load balancing and the importance of identifying hot spots.  
In a system with hundreds or thousands of commodity nodes, load 
balancing is very important – with poor load balancing, the entire 
system can be waiting for a single node.  It is important to 
eliminate any "hot spots" in the system, such as hot spots caused 
by data access (accessing data from a single node) or network IO 
(transferring data into or out of a single node). 

Fault tolerance comes with a price. Both the original 
MapReduce paper [5] and the Hadoop communities have 
emphasized the importance of fault tolerance since the systems 
are designed to run over commodity hardware which fails 
frequently.  However, in certain cases, such as Reduce, fault 
tolerance introduces extra overhead in order to replicate the 
intermediate results.  In some cases, Hadoop applications are 
actually run on small to medium sized clusters, and hardware 
failure during MapReduce processing is rare. It is reasonable in 
these case to favor performance and re-run any failed Reduces 
when necessary.  

Balanced systems.  Although it is obvious to anyone who has set 
up a Hadoop or Sector cluster, it does not hurt to emphasize the 
importance of using a design in which the CPU, disk, and 
networked are well balanced.  Many systems we have seen have 
too many cores and not enough spindles for data intensive 
computing.  



Streams are important.  We were a bit surprised by the 
usefulness of the streaming interface provided by Hadoop, and 
more recently Sector. With this interface, it is quite easy to 
support many legacy applications, and, for some of these, the 
performance is quite respectable. Since Sector does not split files, 
working with streams is quite efficient. 

 

8. SUMMARY  
We have compared and contrasted two systems for data intensive 
computing – Sector/Sphere and Hadoop.  Hadoop was designed 
originally for processing web data, but has proved useful for a 
number of other applications.   Sector supports a more general 
parallel programming framework (the ability to apply Sphere 
UDFs over the data managed by Sector), but is still very easy for 
most programmers to use.  We have discussed some of the design 
differences between the two Sector Distributed File System and 
the Hadoop Distributed File Systems.  In our experimental 
studies, Sector/Sphere is about 2 – 4 times faster than Hadoop.  In 
this paper, we have explored some of the possible reasons for 
Sector’s superior performance.   
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