
Lessons Learned From a Year's Worth of
Benchmarks of Large Data Clouds

Yunhong Gu and Robert Grossman
Laboratory for Advanced Computing, University of Illinois at Chicago

yunhong@lac.uic.edu, grossman@uic.edu

ABSTRACT

In this paper, we discuss some of the lessons that we have learned
working with the Hadoop and Sector/Sphere systems. Both of
these systems are cloud-based systems designed to support data
intensive computing. Both include distributed file systems and
closely coupled systems for processing data in parallel. Hadoop
uses MapReduce, while Sphere supports the ability to execute an
arbitrary user defined function over the data managed by Sector.
We compare and contrast these systems and discuss some of the
design trade-offs necessary in data intensive computing. In our
experimental studies over the past year, Sector/Sphere has
consistently performed about 2 – 4 times faster than Hadoop. We
discuss some of the reasons that might be responsible for this
difference in performance.

Categories and Subject Descriptors
C.4 [Computer System Organization]: Performance of System

General Terms
Performance, Experimentation

Keywords
Cloud Computing, Data Intensive Computing, High Performance
Computing, Grid Computing, MapReduce, Multi-Task Computing

1. INTRODUCTION
Instruments that generate data have increased their capability
following Moore’s Law just as computers have. The result of this
is a gap between the amount of data that is being produced and the
capacity of current systems to store and analyze this data.

As an example, the current generation of high throughput genomic
sequencers now produce 1 TB of data per run, and the new
generation of sequencers will produce datasets that are 10 TB or
larger per run. A sequence center might have several such
systems, with each producing a run or more per week.

The result is that analyzing a large scientific dataset might require
analyzing hundreds of TB or more of data. A current rack of
commodity computers might have four 1 TB disks per computer
and 32 computers per rack. The challenge is to develop a
framework to support data intensive computing that provides
persistent storage for large datasets (that require multiple racks to

store) as well as balanced computing so that this persistent data
can be analyzed.

To say it another way, platforms for data intensive computing
must provide persistent storage that spans hundreds to thousands
of disks and provide balanced computing so that this persistent
data can be analyzed. While there are scalable file systems (e.g.,
Lustre, GPFS, PVFS, etc.), data processing schedulers (Condor,
LSF, etc.) and frameworks (MPI, etc.), few integrate storage and
processing together as is required for data intensive computing.

The reason that it is so important to integrate the storage system
and the processing system tightly is because data locality is the
fundamental principle underlying the efficient processing of very
large datasets. The requirement that all the data in a computation
pass through a single central location (or several such locations)
can be so costly that it can reduce performance by several orders
of magnitude. For example, a 1000-node system would require
aggregate data IO speed at TB/s in order to achieve a performance
comparable to a single node with internal disks.

Supercomputer systems as generally deployed store data in
external storage (RAID, SAN, NAS, etc.) and load data into a
processing system consisting of a very large number of
processors. The data transfer channel between the external storage
system and the computing system can be a very serious
bottleneck.

Google has developed an internal proprietary storage system
called the Google File System (GFS) [6] and an associated
processing system called MapReduce [5] that has very
successfully integrated large scale storage and data processing.
Hadoop [15] is an open source implementation of the
GFS/MapReduce design. Other earlier attempts to integrate data
storage and data processing for large data sets include DataCutter
[2, 12], BAD [3] and Stork [11]. Other systems that support
scheduling for multi-task applications are Condor [14] and Falcon
[13].

Hadoop is now the dominant open source platform for distributed
data storage and parallel data processing over commodity servers.
While Hadoop’s performance is very impressive, there are still
many technical challenges that need to be addressed in order to
improve its performance and usability. Hadoop was designed for
processing web data and it is not surprising that its performance is
less impressive for certain types of scientific applications.

During the last three years, we have designed and implemented a
scalable storage system called Sector and an associated data
processing system called Sphere. Initially, we were not aware of
the GFS/MapReduce system and although there are some
similarities between GFS/MapReduce and Sector/Sphere, there
are also some important differences. In this paper, we identify
these differences and investigate the impact of these design

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MTAGS '09 November 16th, 2009, Portland, Oregon, USA
Copyright © 2009 ACM 978-1-60558-714-1/09/11... $10.00"

choices on performance and usability. The paper also includes
some experimental studies that we have performed during the past
year and some lessons learned.

We start with a brief description of the Sector/Sphere system in
Sector 2. The Hadoop system follows the design of GFS [6] and
MapReduce [5]. We compare the file system design between
Sector and Hadoop in Section 3 and the data processing design of
Hadoops’s MapReduce and Sphere in Section 4. In Section 5 we
discuss how Hadoop and Sector/Sphere can interoperate. We
describe the results from our most recent experimental studies in
Section 6 and summarizes the lessons learned in Section 7. The
paper is concluded in Section 8 with a brief look at future work.

2. SECTOR/SPHERE
Sector is a distributed file system (DFS) and Sphere is a parallel
data processing engine designed to work with data managed by
Sector. In contrast to most traditional distributed file systems that
require hardware to provide fault tolerance, Sector implements
fault tolerance by replicating data in the file system and managing
the replicas. With this approach, Sector can be installed on less
expensive commodity hardware. Sector does not implement a
native file system itself, but instead relies on the local file systems
that are on each of the nodes.

Sector automatically replicates files to different nodes to provide
high reliability and availability. In addition, this strategy favors
read-intensive scenarios since clients can read from different
replicas. Of course, write operations are slower since they require
synchronization between all the replicas.

Sector can also be deployed over wide area networks. Sector is
aware of the network topology when it places replicas. This
means that a Sector client can choose the nearest replica to
improve performance. In this sense, Sector can be viewed as a
content delivery system [10].

Sphere, on the other hand, is a data processing system that is
tightly coupled with Sector. Because of this coupling, Sector and
Sphere can make intelligent decisions about job scheduling and
data location. This is quite different than most distributed file
systems that are not coupled to distributed data processing
systems.

Sphere provides a programming framework that developers can
use to process data stored in Sector. Sphere allows a user defined
function (UDF) to run on each data unit (a record, block, file, or
directory). Note that this model is different than the model used
by grid job schedulers (such as Condor and LSF) and distributed
programming primitives (such as MPI and PVM), both of which
are independent of the underlying file system.

Figure 1 illustrates the architecture of Sector. For readability, in
the rest of this paper, we usually use the term Sector to refer to
Sector/Sphere. Sector contains one security server that is
responsible for authenticating master servers, slave nodes, and
users. One or more master servers can be started. The master
servers are responsible for maintaining the metadata of the storage
system and for scheduling requests from users. The slave nodes
are the computers that actually store and process the data. The
slaves are racks of commodity computers with internal disks. A
client is the user's computer that issues requests to the Sector
system and accepts responses.

Security Server Masters Client

Slaves

SSL SSL

Data

Figure 1: Sector/Sphere System Architecture.

Sector/Sphere is open source software developed in C++. It is
available from sector.sf.net.

3. FILE MANAGEMENT STRATEGY
3.1 Block vs. File
Like the Hadoop Distributed File System (HDFS), the Sector
Distributed File System (SDFS) stores files on the local file
system on all participating nodes. The HDFS splits files into fixed
sized blocks and scatters the blocks over multiple servers. In
contrast, the SDFS does not split files into blocks. A dataset in
the SDFS can consist of multiple files.

To summarize: a dataset in the SDFS consists of multiple files
that are not split into blocks. A dataset in HDFS consists of a
single file that is split into multiple blocks.

The SDFS does not split a dataset into multiple files
automatically. Instead, the user must do this. For some
applications, this can create a small amount of additional work. In
practice though, either a large dataset is already split into multiple
files or this can be done with little effort.

We noticed in several of our experimental studies that in order to
achieve optimal performance with Hadoop we needed to increase
the block size so that an entire Hadoop file could fit into a single
block and was therefore not split. Notice that this effectively
reduces to the same strategy that Sector employs.

In general, the SDFS scatters the files of a Sector dataset over all
the nodes in a cluster. Some applications though require that a
certain collection of files be co-located in a single directory. To
support this, Sector will keep all the files in directory together if a
special file is put into the directory.

3.2 Replication
Both Sector and Hadoop use replication to provide data reliability
and availability, and in certain cases, improve performance.
Hadoop is designed to work within a data center, while Sector is
designed to work over multiple data centers over wide area
networks. This does not prevent Sector from being used within a
single data center.

Sector chooses slave nodes so that replications of the same file are
as far from each other as possible. This increases data reliability
because even if a complete data center goes offline, the data can
still be retrieved from other data centers. Moreover, this strategy
allows a client to choose a nearby replication in a wide area
system, which generally results in better data transfer throughput.

3.3 Data Transfer
To support wide area clouds, Sector not only uses a different
replication strategy, but also uses a high speed transport protocol
called UDT [9]. We choose to use UDT instead of TCP since
UDT has proven to be better than TCP when moving large
datasets over wide area high performance networks [9].

Sector supports the option of encrypting data when transporting it.
Hadoop does not currently support encryption.

4. UDF vs. MapReduce
4.1 The UDF Model
We use the term data segment to refer to a portion of a Sector
dataset. A data segment can be a single record, a contiguous
sequence of records, a file or a directory of files. Sphere processes
data by applying the same user defined function (UDF)
independently to data segments, which are usually scattered over
multiple Sector slave nodes. The input to a Sphere UDF is a
Sector dataset, as is the output. Recall that a Sector dataset
consists of multiple files.

Consider the following serial program for processing data:

for (int i = 0; i < total_segment_num; ++ i)

 UDF(segment[i]);

In Sphere, the UDF is uploaded to slave nodes and each slave
node calls this UDF to process all its local data segments.

Sphere allows a UDF to specify an ID for each output record.
This is usually called a bucket ID and is a standard technique
when processing data in parallel. All records with the same
bucket ID are placed by Sector into the same bucket, which in
Sector is a file. The resulting bucket file may or may not be on the
same node where the data is processed, since different slaves may
generate data with the same bucket IDs.

Sphere's computing paradigm can be thought of as a
generalization of MapReduce. When a Sphere UDF generates
local data only, it can be thought of as a Map process. When a
Sphere UDF generates bucket files, it can be thought of as a
Reduce process.

It is important to note that MapReduce can only processes data
records, while Sphere's UDFs can process Sector data segments,
which can be records, contiguous collections of records, files, or
directories of files. When the data segments are directories, it
enables Sphere to process multiple input streams, since each
directory can contain multiple files from different datasets.

Here is an example. Sphere can process the following serial
program in parallel over multiple slave nodes:

for (int i = 0; i < total_segment_num; ++ i)

 UDF(segment_A[i], segment_B[i]);

Hadoop’s MapReduce always performs a sort operation before it
merges records with the same key. In contrast, Sphere can run
any UDF on the bucket files and perform a sort only when

necessary. For applications that do not require a sort, this
flexibility can be quite useful.

Another difference between Hadoop and Sector is how datasets
are divided into records. Sphere uses a record offset index for
each data file in order to parse the file into data records. The index
contains the offset and size of each record in the file. When an
index is not present, the minimum processing unit is a file or a
directory. In contrast, MapReduce uses a user defined parser that
is invoked at run time to parse the data file into data records.

Table 1 compares the steps when processing data using Hadoop’s
MapReduce and Sphere’s UDFs.

Table 1. Comparing the steps in MapReduce and Sphere

Sphere MapReduce

Record Offset Index Parser / Input Reader

UDF Map

Bucket Partition

- Compare

UDF Reduce

- Output Writer

4.2 Load Balancing
In addition to data locality, another important factor in
performance is load balancing. One of the problems for
distributed data parallel applications is that during certain stages
of the processing data, the data may be distributed over the slave
nodes non-uniformly.

Both Sphere and Hadoop split jobs into relatively small data
segments so that a faster node (either because the hardware is
better or because the data on the node requires less time to
process) can process more data segments. This simple strategy
works well even if the slave nodes are heterogeneous and have
different processing power.

However, Sphere and Hadoop may need to move some data
segments to a node that would otherwise be idle. Both systems try
to move data to the nearest available node in order to minimize
data traffic.

When processing results need to be sent to bucket files (e.g., in a
Reduce style processing), the available network bandwidth may
become the bottleneck. As a simple example, when data is sent
from multiple sources to the same destination node, congestion
may occur on that node and cause a hot spot. Figure 2 illustrates
the problem. In the top illustration, the data transfers are such that
there are several hot spots (in red). In the bottom illustration, the
data transfer is such that there are no hot spots.

Of course, the bottom diagram in Figure 2 is idealized. In practice,
it is very difficult for a centralized scheduler to schedule the
computation so that there are no hot spots. An alternative is to use
a decentralized scheme to identify and remove hot spots caused by
congestion.

In Sphere, the following decentralized approach is used to
eliminate the hot spots. Before a node tries to send results to a
bucket file, it queries the destination node and retrieves recent
data transfer requests. If the aggregate size of the data transfer

requests is greater than a threshold, the source node will attempt
to process other buckets first.

There are some research projects designed to removing network
bottlenecks in data centers [7]. Note that this is different than
removing bottlenecks that occur at hosts.

Figure 2. Data movement in reduce style processing.

There are hot spots in the top figure, but not in the bottom
figure.

4.3 Fault Tolerance
Finally, as the number of slave nodes increases, so does the
importance of fault tolerance. In a Map style processing, fault
tolerance is fairly easy. A failed data segment will be re-processed
on another node, if the failure is caused by the failure of the slave
node hardware, rather than by problems with the data or the UDF.
This feature relies on data replication provided by Sector.

In a Reduce style processing, when a UDF sends data to multiple
bucket files on other nodes, fault tolerance is more complicated
and can result in significant overhead. Because data is exchanged
between source and destination nodes, a source node failure will
cause all related destination nodes to contain incomplete data,
while a destination node failure will lose data contributed by all
related source nodes.

To provide fault tolerance in this situation, the intermediate data
needs to be replicated. Ironically, due to the overhead introduced
by fault tolerance, the total processing time will increase, which
can mean a higher chance of failure.

For this reason, Sphere does not currently provide fault tolerance
for Reduce style processing. One option under investigation is to
find a method that minimizes the cost of re-processing a reduce
when a failure occurs. One possible solution is to split the input
into smaller sub-streams and process them independently. If one
fails, results from other sub-tasks will still be valid and only the
failed sub-tasks will need to be re-executed. Eventually, the
bucket files of all sub-tasks can be merged.

Another issue related to fault tolerance is how to detect poorly
performing nodes. A poorly performing node can seriously delay
the whole computation if Reduce or bucket style data processing
is involved, since in this case all other nodes may need to wait for

data from or to that node. Most fault tolerant systems can detect
dead nodes, but detecting poorly performing nodes remains a
challenge. Hardware issues such as overheating, hard disk error,
problems with the NIC, etc. may cause poor performance.
Problems with the network are other common reasons that nodes
perform poorly.

Sector uses a voting system to eliminate bad nodes. Each slave
node periodically sends performance statistics to the master node.
In particular, each node sends the data transfer rate (ignoring idle
time) to all the other nodes. Voting is used to identify poorly
performing nodes (a node is considered poorly performing if it is
in the lowest 10%). If one node gets more than 50% of the votes,
it is eliminated from the system.

4.4 Streaming
The name "Streaming" is used by Hadoop for a utility that is able
to run applications or system commands directly using a
MapReduce style of processing. This greatly increases the
usability of Hadoop because in many cases users no longer need
to write Java code but instead can simply pass binaries of existing
applications to Hadoop.

Sphere provides a similar utility. Sphere streaming accepts a
system command or application executable and runs it as a UDF.
The streaming utility automatically generates a C++ wrapper that
calls the system command or application executable and processes
the specified data stored in Sector.

For bucket-based processing (e.g., Reduce operation), Sphere
requires the command or application to put the bucket ID as the
first value of each output record. Future versions of Sector will
provide additional mechanisms for specifying the bucket ID.

5. INTEROPERABILITY
While there are many differences in design and implementation of
Sector and Hadoop, it is possible to interoperate the two systems.
For example, Hadoop’s MapReduce can run on top of the SDFS,
with a Sector interface for Hadoop. As another example, running
Sphere on top of HDFS is also possible. In this case, blocks may
need to be moved during a Sphere process.

It is also possible to write applications that can run on both Sector
and Hadoop. Currently this is limited to applications that can be
supported by Hadoop streaming and Sphere streaming, both of
which can accept application binaries (including system
commands) directly and run them in a predefined framework.

More discussions and related work can be found at
http://code.google.com/p/cloud-interop/.

6. EXPERIMENTAL RESULTS
Previously we have conducted experimental studies on the wide
area Open Cloud Testbed [16]. We present here two experiments
conducted on racks within the same data center. This basically
removes the performance gains that UDT provides over a wide
area high performance networks.

MalStone is a benchmark that is a stylized analytic that runs on
synthetic data generated by a utility called MalGen [1]. MalStone
records contain the following fields:

Event ID | Timestamp | Site ID | Entity ID | Flag

A record indicates that an entity visited a site at a certain time. As
a result of the visit, the entity may become marked, which is

indicated by setting the flag to 1 (otherwise it is 0). The MalStone
A-10 and B-10 benchmarks each consist of 10 billion records and
the timestamps are all within a one year period. The MalStone A
benchmark computes a ratio for each site w as follows: for each
site w, aggregate all entities that visited the site at any time, and
compute the percent of visits for which the entity becomes marked
at any future time subsequent to the visit. MalStone B is similar
except that the ratio is computed each week d, and computes: for
each site w, and for all entities that visited the site at week d or
earlier, the percent of visits for which the entity became marked.
MalStone A-100, A-1000, etc. and MalStone B-100, B-1000, etc.
are similar except the dataset consists of 100 Billion, 1 Trillion,
etc. records.

Table 2 lists the results of three different implementations: 1)
Hadoop; 2) Hadoop streaming with Python code implementing
MalStone; 3) Sector/Sphere. The results are obtained from a
single cluster of 20 nodes. The nodes contain an Intel Xeon 5160
3.0 GHz Quad Core CPU, 12GB memory, a single 1TB SATA
disk, and a single 1GE NIC. Version 1.21 of Sector and Version
0.18 of Hadoop were used.

Table 2. MalStone Benchmark for Sphere and Hadoop

 MalStone A MalStone B
Hadoop 454m 13s 840m 50s
Hadoop
Streaming/Python

87m 29s 142m 32s

Sector/Sphere 33m 40s 43m 44s

We also compared Hadoop and Sector using Terasort running on
4 racks within the same data center. We used 30 nodes of each
rack for the test. The nodes contain a single Intel Xeon 5410
Quad Core CPU, 16GB memory, a 1 TB SATA disk in a RAID-0
configuration, and a 1 GE NIC. GNU/Debian Linux 5.0 was
installed on each node. Version 1.24a of Sector and Version
0.20.1 of Hadoop were used.

Table 3 lists the performance of sorting 1 TB of data, consisting
of 100-byte records with a 10-byte key, on 1, 2, 3, and racks (i.e.,
30, 60, 90, and 120 nodes).

Table 3. MalStone Benchmark for Sphere and Hadoop

Number of
Racks

Sphere Hadoop

1 28m 49s 85m 49s
2 15m 20s 37m
3 10m 19s 25m 14s
4 7m 56s 17m 45s

The performance is consistent with the results of our previous
experiments using Sector Version 0.21 and Hadoop Version 0.18
[8], although both systems have been improved significantly since
then.

Furthermore, in this experiment, we also examined the resource
usage of both systems. We noticed that network IO plays an
important role in Terasort. When Sector is running on 120 nodes,
the aggregate network IO is greater than 60 Gb/s, while for
Hadoop the number is only 15 Gb/s.

Because sorting the 1 TB requires exchanging almost the
complete dataset among all the participating nodes, the higher
network IO is an indication that resources are being utilized
effectively. This may explain why Sector is over twice as fast as
Hadoop.

Neither Sector nor Hadoop fully utilized the CPU and memory
resources in this application because the application is still IO
bound. However, Hadoop used much more CPU (200% vs.
120%) and memory (8GB vs. 2GB). This is probably caused by
the Java VM.

Tuning Hadoop to achieve optimal performance can take some
time and effort. In contrast, Sector does not require any
performance tuning.

7. LESSONS LEARNED
In this section, we summarize some of the lessons we have
learned from our experimental studies over the past year.

The importance of data locality. It is well known that locality is
the key factor to support data intensive applications, but this is
especially important for systems such as Sector and Hadoop that
rely on inexpensive commodity hardware. More expensive
specialized hardware can provide higher bandwidth and lower
latency access to disk.

Generalizations of MapReduce. MapReduce has quickly
emerged as one of the most popular frameworks for data intensive
computing. Both the Map operation and the Reduce operation
have been used previously in parallel computing; the reason for
their current popularity is the combination of being easy to use
and their proven ability to be useful for an unexpectedly large
number of applications. From our experience to date, Sector’s
ability to apply a UDF to the data managed by a distributed file
system is also very easy to use and also very broadly applicable.
A MapReduce can be realized as an easy special case.

Load balancing and the importance of identifying hot spots.
In a system with hundreds or thousands of commodity nodes, load
balancing is very important – with poor load balancing, the entire
system can be waiting for a single node. It is important to
eliminate any "hot spots" in the system, such as hot spots caused
by data access (accessing data from a single node) or network IO
(transferring data into or out of a single node).

Fault tolerance comes with a price. Both the original
MapReduce paper [5] and the Hadoop communities have
emphasized the importance of fault tolerance since the systems
are designed to run over commodity hardware which fails
frequently. However, in certain cases, such as Reduce, fault
tolerance introduces extra overhead in order to replicate the
intermediate results. In some cases, Hadoop applications are
actually run on small to medium sized clusters, and hardware
failure during MapReduce processing is rare. It is reasonable in
these case to favor performance and re-run any failed Reduces
when necessary.

Balanced systems. Although it is obvious to anyone who has set
up a Hadoop or Sector cluster, it does not hurt to emphasize the
importance of using a design in which the CPU, disk, and
networked are well balanced. Many systems we have seen have
too many cores and not enough spindles for data intensive
computing.

Streams are important. We were a bit surprised by the
usefulness of the streaming interface provided by Hadoop, and
more recently Sector. With this interface, it is quite easy to
support many legacy applications, and, for some of these, the
performance is quite respectable. Since Sector does not split files,
working with streams is quite efficient.

8. SUMMARY
We have compared and contrasted two systems for data intensive
computing – Sector/Sphere and Hadoop. Hadoop was designed
originally for processing web data, but has proved useful for a
number of other applications. Sector supports a more general
parallel programming framework (the ability to apply Sphere
UDFs over the data managed by Sector), but is still very easy for
most programmers to use. We have discussed some of the design
differences between the two Sector Distributed File System and
the Hadoop Distributed File Systems. In our experimental
studies, Sector/Sphere is about 2 – 4 times faster than Hadoop. In
this paper, we have explored some of the possible reasons for
Sector’s superior performance.

9. Acknowledgements
The Sector/Sphere software system is funded in part by the
National Science Foundation through Grants OCI-0430781, CNS-
0420847, ITR-0325013 and ACI-0325013.

10. REFERENCES

[1] Collin Bennett, Robert Grossman, and Jonathan Seidman,
Open Cloud Consortium Technical Report TR-09-01,
MalStone: A Benchmark for Data Intensive Computing, Apr.
2009.

[2] Beynon, Michael D. and Kurc, Tahsin and Catalyurek, Umit
and Chang, Chialin and Sussman, Alan and Saltz, Joel,
Distributed processing of very large datasets with
DataCutter, Journal of Parallel Computing, Vol. 27, 2001.
Pages 1457 - 1478.

[3] J. Bent, D. Thain, A. Arpaci-Dusseau, and R. Arpaci-
Dusseau, “Explicit control in a batch-aware distributed file
system,” in Proceedings of the First USENIX/ACM
Conference on Networked Systems Design and
Implementation, March 2004.

[4] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C.
Hsieh, Deborah A. Wallach, Mike Burrows, Tushar Chandra,
Andrew Fikes, and Robert E. Gruber, Bigtable: A Distributed
Storage System for Structured Data, OSDI'06: Seventh

Symposium on Operating System Design and
Implementation, Seattle, WA, November, 2006.

[5] Jeffrey Dean and Sanjay Ghemawat, MapReduce: Simplified
Data Processing on Large Clusters, OSDI'04: Sixth
Symposium on Operating System Design and
Implementation, San Francisco, CA, December, 2004.

[6] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung,
The Google File System, pub. 19th ACM Symposium on
Operating Systems Principles, Lake George, NY, October,
2003.

[7] Albert Greenberg, James R. Hamilton, Navendu Jain,
Srikanth Kandula, Changhoon Kim, Parantap Lahiri, David
A. Maltz, Parveen Patel, and Sudipta Sengupta, VL2: A
Scalable and Flexible Data Center Network, SIGCOMM
2009.

[8] Yunhong Gu and Robert Grossman, Exploring Data
Parallelism and Locality in Wide Area Networks, Workshop
on Many-task Computing on Grids and Supercomputers
(MTAGS), co-located with SC08, Austin, TX. Nov. 2008

[9] Yunhong Gu, Robert Grossman, UDT: UDP-based data
transfer for high-speed networks, Computer Networks
(Elsevier), Volume 51, Issue 7. May 2007.

[10] Yunhong Gu, Robert L. Grossman, Alex Szalay and Ani
Thakar, Distributing the Sloan Digital Sky Survey Using
UDT and Sector, Proceedings of e-Science 2006.

[11] Tevfik Kosar and Miron Livny, Stork: Making Data
Placement a First Class Citizen in the Grid, in Proceedings of
24th IEEE International Conference on Distributed
Computing Systems (ICDCS 2004), Tokyo, Japan, March
2004.

[12] T. Kurc, Umit Catalyurek, C. Chang, A. Sussman, and J.
Salz. Exploration and visualization of very large datasets
with the Active Data Repository. Technical Report CS-
TR4208, University of Maryland, 2001.

[13] I. Raicu, Z. Zhang, M. Wilde, I. Foster, P. Beckman, K.
Iskra, and B. Clifford, Toward Loosely Coupled
Programming on Petascale Systems, Proceedings of the 20th
ACM/IEEE Conference on Supercomputing.

[14] Douglas Thain, Todd Tannenbaum, and Miron Livny,
"Distributed Computing in Practice: The Condor Experience"
Concurrency and Computation: Practice and Experience,
Vol. 17, No. 2-4, pages 323-356, February-April, 2005.

[15] Hadoop, hadoop.apache.org/core, Retrieved in Oct. 2009.

[16] The Open Cloud Testbed,
http://www.opencloudconsortium.org.

