Sector /Sphere Tutorial

Yunhong Gu
CloudCom 2010, Nov. 30, Indianapolis, IN

Outline

» Introduction to Sector/Sphere

» Major Features

» Installation and Configuration

» Use Cases

The Sector/Sphere Software

» Includes two components:
Sector distributed file system

Sphere parallel data processing framework

» Open Source, Developed in C++,Apache 2.0 license,
available from

» Started since 2006, current version is 2.5

Motivation: Data Locality

@ 9 9 @ @ ® ® ® Traditional systems:

separated storage and computing

9 9 9 @ T @ @ @ @ sub-system
9 9 9 9 @ ® @ @ Expensive, data IO bandwidth

bottleneck
Storage Compute

8 % 8 8 Sector/Sphere model:

In-storage processing

Inexpensive, parallel data IO,
data locality

Motivation: Simplified Programming

% % Parallel/Distributed Programming with

MPI, etc.:
@ @ Flexible and powerful.

very complicated application

% % % development

@ @ @ @ Sector/Sphere:
Clusters regarded as a single entity to
% % % % < & the developer, simplified programming
interface.
@ @ @ @ Limited to certain data parallel
applications.

Motivation: Global-scale System

-

Data Center

Traditional systems:
Require additional effort to locate and

move data.
Data Reader
] Up\()ad . 8

Data Provider | Asia Location

US Location
Data Center
Data Reader
Asia Location
Sector/Sphere:

Support wide-area data collection and
distribution.

G_Processing
Data User
US Location

Data Provider
Data Provider Europe Location
US Location Data Provider

US Location

Sector Distributed File System

User account Metadata System access tools
Data protection Scheduling App. Programming
System Security Service provider Interfaces

5L 5L

O O O @ UbT
o o o ® o ® Encryption optional
O O O ®
O O O ®
slaves slaves

Storage and
Processing

Security Server

» User account authentication: password and IP address

» Sector uses its own account source, but can be extended
to connected LDAP or local system accounts

» Authenticate masters and slaves with certificates and IP
addresses

Master Server

» Maintain file system metadata

» Multiple active masters: high availability and load balancing
Can join and leave at run time
All respond to users’ requests

Synchronize system metadata

» Maintain status of slave nodes and other master nodes

» Response users’ requests

Slave Nodes

» Store Sector files

Sector is user space file system, each Sector file is stored on
the local file system (e.g., EXT, XFS, etc.) of one or more slave
nodes

Sector file is not split into blocks

» Process Sector data

Data is processed on the same storage node, or nearest
storage node possible

Input and output are Sector files

Clients

» Sector file system client API
Access Sector files in applications using the C++ API

» Sector system tools
File system access tools

» FUSE

Mount Sector file system as a local directory

» Sphere programming API

Develop parallel data processing applications to process
Sector data with a set of simple API

Topology Aware and Application Aware

» Sector considers network topology when managing files
and scheduling jobs

» Users can specify file location when necessary, e.g., in
order to improve application performance or comply
with a security requirement.

Replication

» Sector uses replication to provide software level fault tolerance
No hardware RAID is required

» Replication number

All files are replicated to a specific number by default. No under-
replication or over-replication is allowed.

Per file replication value can be specified

» Replication distance
By default, replication is created on furthest node

Per file distance can be specified, e.g., replication is created at local rack
only.

» Restricted location
Files/directories can be limited to certain location (e.g., rack) only.

Fault Tolerance (Data)

» Sector guarantee data consistency between replicas

» Data is replicated to remote racks and data centers

Can survive loss of data center connectivity

» Existing nodes can continue to serve data no matter how
many nodes are down

» Sector does not require permanent metadata; file system
can be rebuilt from real data only

Fault Tolerance (System)

» All Sector master and slave nodes can join and leave at
run time

» Master monitors slave nodes and can automatically
restart a node if it is down; or remove a node if it appears
to be problematic

» Clients automatically switch to good master/slave node if
the current connected one is down

Transparent to users

UDT: UDP-based Data Transfer

4

» Open source UDP based data transfer protocol
With reliability control and congestion control

» Fast, firewall friendly, easy to use

» Already used in many commercial and research systems
for large data transfer

» Support firewall traversing via UDP hole punching

Wide Area Deployment

» Sector can be deployed across multiple data centers

» Sector uses UDT for data transfer

» Data is replicated to different data centers (configurable)
A client can choose a nearby replica

All data can survive even in the situation of losing connection
to a data center

Rule-based Data Management

» Replication factor, replication distance, and restricted
locations can be configured at per-file level and can be
dynamically changed at run time

» Data |O can be balanced between throughput and fault
tolerance at per client/per file level

In-Storage Data Processing

» Every storage node is also a compute node

» Data is processed at local node or the nearest available
node

» Certain file operations such as md5sum and grep can run
significantly faster in Sector

In-storage processing + parallel processing
No data IO is required

» Large data analytics with Sphere and MapReduce API

Summary of Sector’s Unique Features

» Scale up to 1,000s of nodes and petabytes of storage
» Software level fault tolerance (no hardware RAID is required)

» Works both within a single data center or across distributed
data centers with topology awareness

» In-storage massive parallel data processing via Sphere and
MapReduce APlIs

» Flexible rule-based data management
» Integrated VAN acceleration
» Integrated security and firewall traversing features

» Integrated system monitoring

Limitations

» File size is limited by available space of individual storage
nodes.

» Users may need to split their datasets into proper sizes.

» Sector is designed to provide high throughput on large
datasets, rather than extreme low latency on small files.

Sphere: Simplified Data Processing

» Data parallel applications

» Data is processed at where it resides, or on the nearest
possible node (locality)

» Same user defined functions (UDF) are applied on all
elements (records, blocks, files, or directories)

» Processing output can be written to Sector files or sent
back to the client

» Transparent load balancing and fault tolerance

Sphere: Simplified Data Processing

for each file F 1n (SDSS dataset _ Al
for each image I in F A
findBrownDwarf(l, .); __gonere Cllent

Collect result
Split data

________ -4
!‘ n+m §n+3 n+2 n+l n
o Input Stream
Locate and Schedule
- SPES-.__
SphereStream sdss; e
sdss.init("'sdss files™); SPE | SPE | SPR | SPE
SphereProcess myproc;
myproc->run(sdss, "findBrownDwarf", ..); Yy VvV Vv Vv \
n+3 n+2 n+l n n-k
Output Stream
findBrownDwarf(char* image, iInt isize, char* result, iInt rsize);

Sphere: Data Movement

» Slave -> Slave Local

» Slave -> Slaves
(Hash/Buckets)

Each output record is
assigned an |ID; all records
with the same ID are sent
to the same “bucket” file

» Slave -> Client

n+m

Intermediate

n+2

n+1

L

SPE

SPE

SPE

SPE

- N

- .

Stream
SPE SPE SPE @SPE
b .. 3 2 1 0

Output Stream

Stage 1: Shuffling

Stage 2: Sorting

What does a Sphere program like?

» A client application
Specify input, output, and name of UDF

Inputs and outputs are usually Sector directories or collection
of files

May have multiple round of computation if necessary
(iterative/combinative processing)

» One or more UDFs

C++ functions following the Sphere specification (parameters
and return value)

Compiled into a dynamic library (*.so)

The MalStone Benchmark

» Drive-by problem: visit a web site and get comprised by
malware.

» MalStone-A: compute the infection ratio of each site.

» MalStone-B: compute the infection ratio of each site from
the beginning to the end of every week.

MalStone

Text Record

Event ID | Timestamp | Site ID | Compromise Flag | Entity ID

Transform
Stage 2:
Time Flag Compute infection rate
Key Value for each merchant
1 site-000X site-000X
@
site-001 X site-001 X

e - @ -

Stage |:

Process each record and hash into site-999X site-999x

MalStone code

» Input: collection of log files
» UDF-I

Read a log file, process each line, obtain the site ID, and hash
it into a bucket ID, generate a new record by filtering out
unnecessary information
» Intermediate result: bucket files, each file containing
information on a subset of sites

» UDF-2:

Read a bucket file, compute the infection ratio, per site and
per week

» Output: Files containing infection ratios per site

Prepare for Installation

» Download:

» Documentation:

» Linux, g++ 4.x, openssl-dey, fuse (optional)
Windows porting in progress

» In a testing system, all components can run on the same
machine

Code Structure

conf : configuration files

doc: Sector documentation

examples: Sphere programming examples
fuse: FUSE interface

include: programming header files (C++)
lib: places to stored compiled libraries
master: master server

tools: client tools

security: security server

slave: slave server
Makefile

VvV VvV VvV VvV VvV V9V VvV VvV VvV Vv v©9

Compile /Make

» Download sector.2.5.tar.gz from Sector SourceForge
project website

» tar —zxvf sector.2.5.tar.gz
» cd ./sector-sphere; make

» RPM package is also available

Configuration

» Jconf/Imaster.conf: master server configurations, such
as Sector port, security server address, and master server
data location

» .Jconf/slave.conf: slave node configurations, such as
master server address and local data storage path

» .Jconflclient.conf: master server address and user
account/password so that a user doesn’t need to specify
this information every time they run a Sector tool

Configuration File Path
» $SECTOR HOME/conf

» ..Jconf

If $SECTOR_HOME is not set, all commands should be run at
their original directory

» /opt/sector/conf (RPM installation)

vV Vv VvV Vv

#SECTOR server port number
#note that both TCP/UDP port N and N-| will be used
SECTOR_PORT

6000

#security server address
SECURITY_SERVER
ncdml53.lac.uic.edu:5000

#data directory, for the master to store temporary system data

#this is different from the slave data directory and will not be used
to store data files

DATA_DIRECTORY
/home/u2/yunhong/work/sector_master/

#number of replicas of each file, default is |
REPLICA_NUM
2

Start and Stop Server (Testing)

» Run all sector servers on the same node

» Start Security Server

Jsecurity/sserver

» Start Master server

/master/start_master

» Start Slave server

[slave/start_slave

Start and Stop Sector (Real)

» Step |:start the security server ./security/sserver.

Default port is 5000, use sserver new_port for a different port
number

» Step 2:start the masters and slaves using
/master/start_all
#1. distribute master certificate to all slaves
#2. configure password-free ssh from master to all slave nodes
#3. configure ./conf/slaves.list

» To shutdown Sector, use ./master/stop_all (brutal force)
or ./tools/sector_shutdown (graceful)

Check the Installation

» At ./tools, run sector_sysinfo

» This command should print the basic information about
the system, including masters, slaves, files in the system,
available disk space, etc.

» If nothing is displayed or incorrect information is
displayed, something is wrong.

» It may be helpful to run “start _master” and “start_slave”
manually (instead of “start_all”’) in order to debug

Sector Client Tools

» Located at ./tools

» Most file system commands are available: Is, stat, rm,
mkdir, my, etc.

Note that Sector is a user space file system and there is no
mount point for these commands. Absolute dir has to be
passed to the commands.

» Wild cards * and ? are supported

Upload/Download

» sector_upload can be used to load files into Sector

» sector_upload <src file/dir> <dst dir> [-n
num_of replicas] [-a ip_address] [-c cluster_id] [--
e(ncryption)]

» sector _download can be used to download data to local
file system

» sector_download <sector _file/dir> <local dir> [--e]

» You can run these over Internet connections, benefiting
from the integrated UDT WAN acceleration

()

Sector-FUS]
» Require FUSE library installed

» ./fuse
make

[sector-fuse <local path>

» FUSE allows Sector to be mounted as a local file system
directory so you can use the common file system
commands to access Sector files.

SectorFS API
» C++ API

» You may open any source files in ./tools as an example for
SectorFS API.

» Sector requires login/logout, init/close.

» File operations are similar to common FS APls, e.g., open,
read, write, seekp/seekg, tellp/tellg, close, stat, etc.

Sphere API
» C++ API for both Sphere UDF and MapReduce interface

» Learn By Example: see example applications in sector-
sphere/examples.

Most examples are within 100 — 200 lines of C++ code

» Documentation of each API is also available

http://sector.sourceforge.net/doc/index.htm

Use Scenario #1

» Use Sector as distributed data storage/manage system

» Sector is inexpensive (open source, commodity
hardware), very scalable, support high availability with
multiple active masters, high performance 10 with direct
data access

» Few other file systems can
Support wide area deployments with single instance
Support dynamic per-file data management rules

» Reasonable security

Use Scenario #2

4

Sector can be used as an advanced data sharing platform

It can aggregate large number of geographically distributed
servers with a unified namespace

Nearby replica can be chosen for more bandwidth
UDT enables high speed data transfer from remote clients

Compare to FTP or other point-to-point/one-to-many
systems

Single data server vs. 1000s of data servers

TCP/HTTP vs.UDT

Single point of failure vs. fault tolerance
Centralized servers vs. distributed servers

Use Scenario #3

» Sector/Sphere can be used for high performance large
data analytics

» Comparable to Hadoop MapReduce
» Faster than Hadoop by 2 — 4x

For More Information

» Project Website:
» SourceForge:

» Contact me:Yunhong Gu first_name.last_name@gmail

