
Sector/Sphere Tutorial

Yunhong Gu
CloudCom 2010, Nov. 30, Indianapolis, IN

OutlineOutline
 Introduction to Sector/Sphere

 Major Features

 Installation and Configuration

 Use Cases

The Sector/Sphere SoftwareThe Sector/Sphere Software
 Includes two components:
 Sector distributed file system Sector distributed file system
 Sphere parallel data processing framework

 Open Source, Developed in C++, Apache 2.0 license,
available from http://sector.sf.net

 Started since 2006, current version is 2.5

Motivation: Data LocalityMotivation: Data Locality
Traditional systems:
separated storage and computing

Storage Compute

Data

p g p g
sub-system
Expensive, data IO bandwidth
bottleneck

g p

Sector/Sphere model:
In-storage processing
Inexpensive, parallel data IO,
data localitydata locality

Motivation: Simplified ProgrammingMotivation: Simplified Programming

Parallel/Distributed Programming with g g
MPI, etc.:
Flexible and powerful.
very complicated application
developmentdevelopment

Sector/Sphere:
Clusters regarded as a single entity to
the developer, simplified programming p p p g g
interface.
Limited to certain data parallel
applications.

Motivation: Global-scale SystemMotivation: Global scale System

Traditional systems:Data Center y
Require additional effort to locate and
move data.

Data Center

Data Center

Data Provider

Uplo
ad

Data Reader
Asia Location

Download

Upload

Data Center
US Location

Sector/Sphere:
Support wide-area data collection and

Sector/Sphere
Processing

Data Reader
Asia Location

Download

pp
distribution.

Data Provider
US Location Data Provider

Data Provider
Europe Location

Uplo
ad

U
pl

oa
d

Upload

Data User
US Location

g

Data Provider
US Location

Sector Distributed File SystemSector Distributed File System

User account Metadata System access tools

S S M

Data protection
System Security

Metadata
Scheduling

Service provider

System access tools
App. Programming

Interfaces

Security Server Masters
SSL SSL

Clients

Data

UDT
Encryption optional

slaves slaves Storage and

Encryption optional

g
Processing

Security ServerSecurity Server
 User account authentication: password and IP address

 Sector uses its own account source, but can be extended
to connected LDAP or local system accountsy

 Authenticate masters and slaves with certificates and IP
addresses

Master ServerMaster Server
 Maintain file system metadata

 Multiple active masters: high availability and load balancing
 Can join and leave at run time Can join and leave at run time
 All respond to users’ requests
 Synchronize system metadata

 Maintain status of slave nodes and other master nodes

 Response users’ requests

Slave NodesSlave Nodes
 Store Sector files
 Sector is user space file system each Sector file is stored on  Sector is user space file system, each Sector file is stored on

the local file system (e.g., EXT, XFS, etc.) of one or more slave
nodes
S fil i li i bl k Sector file is not split into blocks

 Process Sector data Process Sector data
 Data is processed on the same storage node, or nearest

storage node possibleg p
 Input and output are Sector files

ClientsClients
 Sector file system client API
 Access Sector files in applications using the C++ APIpp g

 Sector system tools
 Fil t t l File system access tools

 FUSE
 Mount Sector file system as a local directory

S h i API Sphere programming API
 Develop parallel data processing applications to process

Sector data with a set of simple API

Topology Aware and Application AwareTopology Aware and Application Aware
 Sector considers network topology when managing files

and scheduling jobsand scheduling jobs

 Users can specify file location when necessary, e.g., in p y y, g ,
order to improve application performance or comply
with a security requirement.

ReplicationReplication
 Sector uses replication to provide software level fault tolerance

 No hardware RAID is required

 Replication number
 All files are replicated to a specific number by default. No under-

replication or over replication is allowedreplication or over-replication is allowed.
 Per file replication value can be specified

 Replication distance Replication distance
 By default, replication is created on furthest node
 Per file distance can be specified, e.g., replication is created at local rack

only.y

 Restricted location
 Files/directories can be limited to certain location (e.g., rack) only.(g ,) y

Fault Tolerance (Data)Fault Tolerance (Data)
 Sector guarantee data consistency between replicas

 Data is replicated to remote racks and data centers
 Can survive loss of data center connectivity Can survive loss of data center connectivity

 Existing nodes can continue to serve data no matter how g
many nodes are down

 Sector does not require permanent metadata; file system
can be rebuilt from real data only

Fault Tolerance (System)Fault Tolerance (System)
 All Sector master and slave nodes can join and leave at

run timerun time

 Master monitors slave nodes and can automatically y
restart a node if it is down; or remove a node if it appears
to be problematic

 Clients automatically switch to good master/slave node if
th t t d i dthe current connected one is down
 Transparent to users

UDT: UDP-based Data TransferUDT: UDP based Data Transfer
 http://udt.sf.net

 Open source UDP based data transfer protocol
 With reliability control and congestion control

 Fast, firewall friendly, easy to use

 Already used in many commercial and research systems
for large data transferg

 Support firewall traversing via UDP hole punching

Wide Area DeploymentWide Area Deployment
 Sector can be deployed across multiple data centers

 Sector uses UDT for data transfer

 Data is replicated to different data centers (configurable)
 A client can choose a nearby replicay p
 All data can survive even in the situation of losing connection

to a data center

Rule-based Data ManagementRule based Data Management
 Replication factor, replication distance, and restricted

locations can be configured at per-file level and can be locations can be configured at per file level and can be
dynamically changed at run time

 Data IO can be balanced between throughput and fault
tolerance at per client/per file level

In-Storage Data ProcessingIn Storage Data Processing
 Every storage node is also a compute node

 Data is processed at local node or the nearest available
node

 Certain file operations such as md5sum and grep can run
significantly faster in Sectorsignificantly faster in Sector
 In-storage processing + parallel processing
 No data IO is required

 Large data analytics with Sphere and MapReduce API

Summary of Sector’s Unique FeaturesSummary of Sector s Unique Features
 Scale up to 1,000s of nodes and petabytes of storage
 Software level fault tolerance (no hardware RAID is required) Software level fault tolerance (no hardware RAID is required)
 Works both within a single data center or across distributed

data centers with topology awareness
 In-storage massive parallel data processing via Sphere and

MapReduce APIs
 Fl ibl l b d d t t Flexible rule-based data management
 Integrated WAN acceleration
 Integrated security and firewall traversing features Integrated security and firewall traversing features
 Integrated system monitoring

LimitationsLimitations
 File size is limited by available space of individual storage

nodes.nodes.

 Users may need to split their datasets into proper sizes.y p p p

 Sector is designed to provide high throughput on large g p g g p g
datasets, rather than extreme low latency on small files.

Sphere: Simplified Data ProcessingSphere: Simplified Data Processing
 Data parallel applications

 Data is processed at where it resides, or on the nearest
possible node (locality)

 Same user defined functions (UDF) are applied on all
elements (records, blocks, files, or directories)

 Processing output can be written to Sector files or sent
back to the client

 Transparent load balancing and fault tolerance

Sphere: Simplified Data ProcessingSphere: Simplified Data Processing

for each file F in (SDSS datasets) Applicationfor each file F in (SDSS datasets)
for each image I in F

findBrownDwarf(I, …); Sphere Client

pp

Split data
Collect result

nn+1n+2n+3...n+m

Locate and Schedule

Split data

Input Stream

SPESPESPESPE

Locate and Schedule
SPEsSphereStream sdss;

sdss.init("sdss files");
SphereProcess myproc;

(d fi d f)
n-k...nn+1n+2n+3

Output Stream

myproc->run(sdss,"findBrownDwarf", …);

findBro nD arf(char* image int isi e char* res lt int rsi e)findBrownDwarf(char* image, int isize, char* result, int rsize);

Sphere: Data MovementSphere: Data Movement

 Slave -> Slave Local nn+1n+2n+3...n+m

I S

 Slave -> Slaves
(Hash/Buckets) SPESPESPESPE

1:
 S

hu
ffl

in
gInput Stream

 Each output record is
assigned an ID; all records
with the same ID are sent

0123...b

St
ag

e

with the same ID are sent
to the same “bucket” file

 Slave -> Client SPESPESPESPE : S
or

tin
g

Intermediate
Stream

0123...b

St
ag

e
2:

03b

Output Stream

What does a Sphere program like?What does a Sphere program like?
 A client application
 Specify input, output, and name of UDFp y p , p ,
 Inputs and outputs are usually Sector directories or collection

of files
 May have multiple round of computation if necessary  May have multiple round of computation if necessary

(iterative/combinative processing)

 One or more UDFs
 C++ functions following the Sphere specification (parameters

and return value))
 Compiled into a dynamic library (*.so)

The MalStone BenchmarkThe MalStone Benchmark
 Drive-by problem: visit a web site and get comprised by

malware.malware.
 MalStone-A: compute the infection ratio of each site.
 MalStone-B: compute the infection ratio of each site from p

the beginning to the end of every week.

h // d l / / l /http://code.google.com/p/malgen/

MalStoneMalStone

Event ID | Timestamp | Site ID | Compromise Flag | Entity ID

Text Record

Event ID | Timestamp | Site ID | Compromise Flag | Entity ID
00000000005000000043852268954353585368|2008-11-08
17:56:52.422640|3857268954353628599|1|000000497829

Transform

Site ID Time

Key Value

Stage 2:
Compute infection rate
for each merchant

Transform

Flag

Key Value

3-byte
site-000X

site 001X

site-000X

site 001Xsite-001X
000-999

Stage 1:

site-001X

site-999X
Stage 1:
Process each record and hash into
buckets according to site ID

site-999x

MalStone codeMalStone code
 Input: collection of log files
 UDF 1 UDF-1
 Read a log file, process each line, obtain the site ID, and hash

it into a bucket ID, generate a new record by filtering out , g y g
unnecessary information

 Intermediate result: bucket files, each file containing
information on a subset of sites

 UDF-2:
 Read a bucket file, compute the infection ratio, per site and

per week

 Output: Files containing infection ratios per site Output: Files containing infection ratios per site

Prepare for InstallationPrepare for Installation
 Download:
 http://sourceforge.net/projects/sectorp g p j

 Documentation:
 http://sector.sourceforge.net/doc/index.htm

 Linux g++ 4 x openssl dev fuse (optional) Linux, g++ 4.x, openssl-dev, fuse (optional)
 Windows porting in progress

 In a testing system, all components can run on the same
machine

Code StructureCode Structure
 conf : configuration files
 doc: Sector documentation doc: Sector documentation
 examples: Sphere programming examples
 fuse: FUSE interface
 include: programming header files (C++)
 lib: places to stored compiled libraries

  master: master server
 tools: client tools
 security: security server security: security server
 slave: slave server
 Makefile

Compile/MakeCompile/Make
 Download sector.2.5.tar.gz from Sector SourceForge

project websiteproject website

 tar –zxvf sector.2.5.tar.gzg

 cd ./sector-sphere; makep

 RPM package is also available

ConfigurationConfiguration
 ./conf/master.conf: master server configurations, such

as Sector port, security server address, and master server as Sector port, security server address, and master server
data location

 ./conf/slave.conf: slave node configurations, such as
master server address and local data storage path

 ./conf/client.conf: master server address and user
t/ d th t d ’t d t if account/password so that a user doesn’t need to specify

this information every time they run a Sector tool

Configuration File PathConfiguration File Path
 $SECTOR_HOME/conf

 ../conf
 If $SECTOR HOME is not set, all commands should be run at  If $SECTOR_HOME is not set, all commands should be run at

their original directory

 /opt/sector/conf (RPM installation)

 #SECTOR server port number
 #note that both TCP/UDP port N and N-1 will be used
 SECTOR_PORT
 6000

 #security server address
 SECURITY_SERVER
 ncdm153.lac.uic.edu:5000 ncdm153.lac.uic.edu:5000

 #data directory, for the master to store temporary system data
 #this is different from the slave data directory and will not be used  #this is different from the slave data directory and will not be used

to store data files
 DATA_DIRECTORY
 /home/u2/yunhong/work/sector master/ /home/u2/yunhong/work/sector_master/

 #number of replicas of each file, default is 1
 REPLICA NUM REPLICA_NUM
 2

Start and Stop Server (Testing)Start and Stop Server (Testing)
 Run all sector servers on the same node

 Start Security Server
 ./security/sserver ./security/sserver

 Start Master server
 ./master/start_master

 Start Slave server
 ./slave/start_slave

Start and Stop Sector (Real)Start and Stop Sector (Real)
 Step 1: start the security server ./security/sserver.
 Default port is 5000, use sserver new_port for a different port p , _p p

number

 Step 2: start the masters and slaves using  Step 2: start the masters and slaves using
./master/start_all
 #1. distribute master certificate to all slaves
 #2. configure password-free ssh from master to all slave nodes
 #3. configure ./conf/slaves.list

 To shutdown Sector, use ./master/stop_all (brutal force)
or ./tools/sector_shutdown (graceful)

Check the InstallationCheck the Installation
 At ./tools, run sector_sysinfo

 This command should print the basic information about
the system, including masters, slaves, files in the system, y , g , , y ,
available disk space, etc.

 If nothing is displayed or incorrect information is
displayed, something is wrong.

 It may be helpful to run “start_master” and “start_slave”
manually (instead of “start all”) in order to debugmanually (instead of start_all) in order to debug

Sector Client ToolsSector Client Tools
 Located at ./tools

 Most file system commands are available: ls, stat, rm,
mkdir, mv, etc., ,
 Note that Sector is a user space file system and there is no

mount point for these commands. Absolute dir has to be
passed to the commandspassed to the commands.

 Wild cards * and ? are supported Wild cards and ? are supported

Upload/DownloadUpload/Download
 sector_upload can be used to load files into Sector
 sector upload <src file/dir> <dst dir> [n  sector_upload <src file/dir> <dst dir> [-n

num_of_replicas] [-a ip_address] [-c cluster_id] [--
e(ncryption)]

 sector_download can be used to download data to local
file system

 sector_download <sector_file/dir> <local_dir> [--e]

 You can run these over Internet connections, benefiting
from the integrated UDT WAN accelerationfrom the integrated UDT WAN acceleration

Sector-FUSESector FUSE
 Require FUSE library installed

 ./fuse
 make make
 ./sector-fuse <local path>

 FUSE allows Sector to be mounted as a local file system
directory so you can use the common file system

d S filcommands to access Sector files.

SectorFS APISectorFS API
 C++ API

 You may open any source files in ./tools as an example for
SectorFS API.

 Sector requires login/logout, init/close.q g g

 File operations are similar to common FS APIs, e.g., open,
read, write, seekp/seekg, tellp/tellg, close, stat, etc.

Sphere APISphere API
 C++ API for both Sphere UDF and MapReduce interface

 Learn By Example: see example applications in sector-
sphere/examples.p p
 Most examples are within 100 – 200 lines of C++ code

 Documentation of each API is also available
 http://sector.sourceforge.net/doc/index.htm

Use Scenario #1Use Scenario #1
 Use Sector as distributed data storage/manage system

 Sector is inexpensive (open source, commodity
hardware), very scalable, support high availability with

l i l i hi h f IO i h di multiple active masters, high performance IO with direct
data access

 Few other file systems can
 Support wide area deployments with single instance
 Support dynamic per-file data management rules

 Reasonable security Reasonable security

Use Scenario #2Use Scenario #2
 Sector can be used as an advanced data sharing platform

 It can aggregate large number of geographically distributed
servers with a unified namespace

 Nearby replica can be chosen for more bandwidth Nearby replica can be chosen for more bandwidth
 UDT enables high speed data transfer from remote clients

 Compare to FTP or other point-to-point/one-to-many
systems
 Single data server vs 1000s of data servers Single data server vs. 1000s of data servers
 TCP/HTTP vs. UDT
 Single point of failure vs. fault tolerance

C li d di ib d  Centralized servers vs. distributed servers

Use Scenario #3Use Scenario #3
 Sector/Sphere can be used for high performance large

data analyticsdata analytics

 Comparable to Hadoop MapReducep p p
 Faster than Hadoop by 2 – 4x

For More InformationFor More Information
 Project Website: http://sector.sf.net

 SourceForge: http://sourceforge.net/projects/sector

 Contact me: Yunhong Gu first_name.last_name@gmail

